Crystal structures of Tritrichomonasfoetus inosine monophosphate dehydrogenase in complex with substrate, cofactor and analogs: a structural basis for the random-in ordered-out kinetic mechanism.

نویسندگان

  • Glen L Prosise
  • Hartmut Luecke
چکیده

The enzyme inosine monophosphate dehydrogenase (IMPDH) is responsible for the rate-limiting step in guanine nucleotide biosynthesis. Because it is up-regulated in rapidly proliferating cells, human type II IMPDH is actively targeted for immunosuppressive, anticancer, and antiviral chemotherapy. The enzyme employs a random-in ordered-out kinetic mechanism where substrate or cofactor can bind first but product is only released after the cofactor leaves. Due to structural and kinetic differences between mammalian and microbial enzymes, most drugs that are successful in the inhibition of mammalian IMPDH are far less effective against the microbial forms of the enzyme. It is possible that with greater knowledge of the structural mechanism of the microbial enzymes, an effective and selective inhibitor of microbial IMPDH will be developed for use as a drug against multi-drug resistant bacteria and protists. The high-resolution crystal structures of four different complexes of IMPDH from the protozoan parasite Tritrichomonas foetus have been solved: with its substrate IMP, IMP and the inhibitor mycophenolic acid (MPA), the product XMP with MPA, and XMP with the cofactor NAD(+). In addition, a potassium ion has been located at the dimer interface. A structural model for the kinetic mechanism is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tritrichomonas foetus: a strategy for structure-based inhibitor design of a protozoan inosine-5'-monophosphate dehydrogenase.

Inosine-5'-monophosphate dehydrogenase (IMPDH) is an attractive drug target for the control of parasitic infections. The enzyme catalyzes the NAD-dependent oxidation of inosine monophosphate (IMP) to xanthosine monophosphate (XMP), the committed step in guanosine monophosphate (GMP) biosynthesis. We have determined the crystal structures of IMPDH from the protozoan parasite Tritrichomonas foetu...

متن کامل

Inosine 5 0 - Monophosphate Dehydrogenase

I. Overview of IMPDH A. Protein Structures II. Medicinal Applications of IMPDH Inhibitors A. IMP Analogs B. NAD Analogs C. Natural Product Inhibitors D. Novel Synthetic Inhibitors III. Kinetic Mechanism and Substrate Interactions A. Case Studies 1. Tritrichomonas foetus IMPDH 2. Escherichia coli IMPDH 3. Human IMPDH B. Ligand Binding 1. IMP Binding Site 2. NAD Binding Site IV. Chemical Mechanis...

متن کامل

Crystal structure of Tritrichomonas foetus inosine monophosphate dehydrogenase in complex with the inhibitor ribavirin monophosphate reveals a catalysis-dependent ion-binding site.

Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in GMP biosynthesis. The resulting intracellular pool of guanine nucleotides is of great importance to all cells for use in DNA and RNA synthesis, metabolism, and signal transduction. The enzyme binds IMP and the cofactor NAD(+) in random order, IMP is converted to XMP, NAD(+) is reduced to NADH, and finally, NADH and ...

متن کامل

Induction of apoptosis by novel inosine monophosphate dehydrogenase, 3-hydrogenkwadaphnin

Today’s medical word is highly dependent on severel natural products (e.g. taxol) in fighting different kinds of cancer and in constantly working to found new compounds. In this respect, 3-hydrogenkwadaphnin is a new diterpene ester isolated from Dendrostellera lessertii (Thymelaceae). It has been previously shown that this new compound has high anti-tumor activity and the capability of arresti...

متن کامل

Structure and Mechanism of Inosine Monophosphate Dehydrogenase in Complex with the Immunosuppressant Mycophenolic Acid

The structure of inosine-5'-monophosphate dehydrogenase (IMPDH) in complex with IMP and mycophenolic acid (MPA) has been determined by X-ray diffraction. IMPDH plays a central role in B and T lymphocyte replication. MPA is a potent IMPDH inhibitor and the active metabolite of an immunosuppressive drug recently approved for the treatment of allograft rejection. IMPDH comprises two domains: a cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 326 2  شماره 

صفحات  -

تاریخ انتشار 2003